Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Mol Biol (Mosk) ; 57(1): 3-9, 2023.
Article in Russian | MEDLINE | ID: covidwho-2290756

ABSTRACT

The study of the role of cytokines in various pathological conditions of the body is a topical area in modern biomedicine. Understanding the physiological roles played by cytokines will aid in finding applications for them as pharmacological agents in clinical practice. Interleukin 11 (IL-11) was discovered in 1990 in fibrocyte-like bone marrow stromal cells, but there has been increased interest in this cytokine in recent years. IL-11 has been shown to correct inflammatory pathways in the epithelial tissues of the respiratory system, where the main events occur during SARS-CoV-2 infection. Further research in this direction will probably support the use of this cytokine in clinical practice. The cytokine plays a significant role in the central nervous system; local expression by nerve cells has been shown. Studies show the involvement of IL-11 in the mechanisms of development of a number of pathologies of the nervous system, and therefore it seems relevant to generalize and analyze the experimental data obtained in this direction. This review summarizes information that shows the involvement of IL-11 in the mechanisms of development of brain pathologies. In the near future this cytokine will likely find clinical application for the correction of mechanisms that are involved in the formation of pathological conditions of the nervous system.


Subject(s)
COVID-19 , Interleukin-11 , Humans , Antigens, CD/metabolism , COVID-19/genetics , Cytokine Receptor gp130 , Cytokines/pharmacology , Interleukin-11/genetics , Nervous System/metabolism , SARS-CoV-2/metabolism
2.
Mol Biol ; 57(1): 1-6, 2023.
Article in English | MEDLINE | ID: covidwho-2248390

ABSTRACT

The study of the role of cytokines in various pathological conditions of the body is a topical area in modern biomedicine. Understanding the physiological roles played by cytokines will aid in finding applications for them as pharmacological agents in clinical practice. Interleukin 11 (IL-11) was discovered in 1990 in fibrocyte-like bone marrow stromal cells, but there has been increased interest in this cytokine in recent years. IL-11 has been shown to correct inflammatory pathways in the epithelial tissues of the respiratory system, where the main events occur during SARS-CoV-2 infection. Further research in this direction will probably support the use of this cytokine in clinical practice. The cytokine plays a significant role in the central nervous system; local expression by nerve cells has been shown. Studies show the involvement of IL-11 in the mechanisms of development of a number of pathologies of the nervous system, and therefore it seems relevant to generalize and analyze the experimental data obtained in this direction. This review summarizes information that shows the involvement of IL-11 in the mechanisms of development of brain pathologies. In the near future this cytokine will likely find clinical application for the correction of mechanisms that are involved in the formation of pathological conditions of the nervous system.

3.
Aging Cell ; 21(8): e13680, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1992692

ABSTRACT

Determining the mechanism of senescence-associated pulmonary fibrosis is crucial for designing more effective treatments for chronic lung diseases. This study aimed to determine the following: whether Sirt1 and serum vitamin D decreased with physiological aging, promoting senescence-associated pulmonary fibrosis by activating TGF-ß1/IL-11/MEK/ERK signaling, whether Sirt1 overexpression prevented TGF-ß1/IL-11/MEK/ERK signaling-mediated senescence-associated pulmonary fibrosis in vitamin D-deficient (Cyp27b1-/- ) mice, and whether Sirt1 downregulated IL-11 expression transcribed by TGF-ß1/Smad2 signaling through deacetylating histone at the IL-11 promoter in pulmonary fibroblasts. Bioinformatics analysis with RNA sequencing data from pulmonary fibroblasts of physiologically aged mice was conducted for correlation analysis. Lungs from young and physiologically aged wild-type (WT) mice were examined for cell senescence, fibrosis markers, and TGF-ß1/IL-11/MEK/ERK signaling proteins, and 1,25(OH)2 D3 and IL-11 levels were detected in serum. Nine-week-old WT, Sirt1 mesenchymal transgene (Sirt1Tg ), Cyp27b1-/- , and Sirt1Tg Cyp27b1-/- mice were observed the pulmonary function, aging, and senescence-associated secretory phenotype and TGF-ß1/IL-11/MEK/ERK signaling. We found that pulmonary Sirt1 and serum vitamin D decreased with physiological aging, activating TGF-ß1/IL-11/MEK/ERK signaling, and promoting senescence-associated pulmonary fibrosis. Sirt1 overexpression improved pulmonary dysfunction, aging, DNA damage, senescence-associated secretory phenotype, and fibrosis through downregulating TGF-ß1/IL-11/MEK/ERK signaling in Cyp27b1-/- mice. Sirt1 negatively regulated IL-11 expression through deacetylating H3K9/14ac mainly at the region from -871 to -724 of IL-11 promoter, also the major binding region of Smad2 which regulated IL-11 expression at the transcriptional level, and subsequently inhibiting TGF-ß1/IL-11/MEK/ERK signaling in pulmonary fibroblasts. This signaling in aging fibroblasts could be a therapeutic target for preventing senescence-associated pulmonary fibrosis induced by vitamin D deficiency.


Subject(s)
Interleukin-11/metabolism , Pulmonary Fibrosis , Sirtuin 1/metabolism , Vitamin D Deficiency , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase , Animals , Fibrosis , Mice , Mitogen-Activated Protein Kinase Kinases/adverse effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/genetics , Sirtuin 1/genetics , Transforming Growth Factor beta1/metabolism , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/genetics
4.
Protein Pept Lett ; 29(6): 514-537, 2022.
Article in English | MEDLINE | ID: covidwho-1779853

ABSTRACT

BACKGROUND: Interleukin-11 is a pleiotropic cytokine that is known to play an important role in the progression of various forms of cancer by modulating the survival and proliferation of tumour cells. IL11 also demonstrates a structural homology to IL6, the predominant cytokine involved in COVID-19. This makes IL11 a potential therapeutic target in both diseases. OBJECTIVE: This study aimed to evaluate the impact of the two-point mutations, R135E and R190E, on the stability of IL11 and their effect on the binding affinity of IL11 with its receptor IL11Rα. It is a molecular level analysis based on the existing experimental validation. METHODS: Computer-aided drug designing techniques, such as molecular modelling, molecular docking, and molecular dynamics simulations, were employed to determine the consequential effects of the two-point mutations. RESULTS: Our analysis revealed that the two mutations led to a decrease in the overall stability of IL11. This was evident by the increased atomic fluctuations in the mutated regions as well as the corresponding elevation in the deviations seen through RMSD and Rg values. It was also accompanied by a loss in the secondary structural organisation in the mutated proteins. Moreover, mutation R135E led to an increase in the binding affinity of IL11 with IL11Rα and the formation of a more stable complex in comparison to the wild-type protein with its receptor. CONCLUSION: Mutation R190E led to the formation of a less stable complex than the wild-type, which suggests a decrease in the binding affinity between IL11 and IL11Rα.


Subject(s)
COVID-19 , Cytokine Release Syndrome , Interleukin-11 , Neoplasms , COVID-19/genetics , Cytokine Release Syndrome/genetics , Cytokine Release Syndrome/virology , Cytokines , Humans , Interleukin-11/genetics , Molecular Docking Simulation , Molecular Dynamics Simulation , Neoplasms/genetics
5.
Cells ; 10(11)2021 11 09.
Article in English | MEDLINE | ID: covidwho-1512136

ABSTRACT

(1) Background: The coronavirus (COVID-19) pandemic is still a major global health problem, despite the development of several vaccines and diagnostic assays. Moreover, the broad symptoms, from none to severe pneumonia, and the various responses to vaccines and the assays, make infection control challenging. Therefore, there is an urgent need to develop non-invasive biomarkers to quickly determine the infection severity. Circulating RNAs have been proven to be potential biomarkers for a variety of diseases, including infectious ones. This study aimed to develop a genetic network related to cytokines, with clinical validation for early infection severity prediction. (2) Methods: Extensive analyses of in silico data have established a novel IL11RA molecular network (IL11RNA mRNA, LncRNAs RP11-773H22.4 and hsa-miR-4257). We used different databases to confirm its validity. The differential expression within the retrieved network was clinically validated using quantitative RT-PCR, along with routine assessment diagnostic markers (CRP, LDH, D-dimmer, procalcitonin, Ferritin), in100 infected subjects (mild and severe cases) and 100 healthy volunteers. (3) Results: IL11RNA mRNA and LncRNA RP11-773H22.4, and the IL11RA protein, were significantly upregulated, and there was concomitant downregulation of hsa-miR-4257, in infected patients, compared to the healthy controls, in concordance with the infection severity. (4) Conclusion: The in-silico data and clinical validation led to the identification of a potential RNA/protein signature network for novel predictive biomarkers, which is in agreement with ferritin and procalcitonin for determination of COVID-19 severity.


Subject(s)
COVID-19/diagnosis , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Adult , Biomarkers/blood , COVID-19/genetics , COVID-19/metabolism , Computational Biology , Female , Humans , Interleukin-11 Receptor alpha Subunit/blood , Interleukin-11 Receptor alpha Subunit/genetics , Male , MicroRNAs/blood , RNA, Long Noncoding/blood , RNA, Messenger/blood , ROC Curve , SARS-CoV-2/isolation & purification , Severity of Illness Index
6.
Front Immunol ; 11: 1424, 2020.
Article in English | MEDLINE | ID: covidwho-703801

ABSTRACT

Cytokines are small signaling proteins that have central roles in inflammation and cell survival. In the half-century since the discovery of the first cytokines, the interferons, over fifty cytokines have been identified. Amongst these is interleukin (IL)-6, the first and prototypical member of the IL-6 family of cytokines, nearly all of which utilize the common signaling receptor, gp130. In the last decade, there have been numerous advances in our understanding of the structural mechanisms of IL-6 family signaling, particularly for IL-6 itself. However, our understanding of the detailed structural mechanisms underlying signaling by most IL-6 family members remains limited. With the emergence of new roles for IL-6 family cytokines in disease and, in particular, roles of IL-11 in cardiovascular disease, lung disease, and cancer, there is an emerging need to develop therapeutics that can progress to clinical use. Here we outline our current knowledge of the structural mechanism of signaling by the IL-6 family of cytokines. We discuss how this knowledge allows us to understand the mechanism of action of currently available inhibitors targeting IL-6 family cytokine signaling, and most importantly how it allows for improved opportunities to pharmacologically disrupt cytokine signaling. We focus specifically on the need to develop and understand inhibitors that disrupt IL-11 signaling.


Subject(s)
Interleukin-11 , Interleukin-6 , Signal Transduction/immunology , Animals , Humans , Interleukin-11/chemistry , Interleukin-11/immunology , Interleukin-11/metabolism , Interleukin-6/chemistry , Interleukin-6/immunology , Interleukin-6/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL